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Abstract—The hierarchical Pitman-Yor process-based
smoothing method applied to language model was proposed
by Goldwater and by Teh; the performance of this smoothing
method is shown comparable with the modified Kneser-Ney
method in terms of perplexity. Although this method was
presented four years ago, there has been no paper which
reports that this language model indeed improves translation
quality in the context of Machine Translation (MT). This
is important for the MT community since an improvement
in perplexity does not always lead to an improvement in
BLEU score; for example, the success of word alignment
measured by Alignment Error Rate (AER) does not often
lead to an improvement in BLEU. This paper reports in
the context of MT that an improvement in perplexity really
leads to an improvement in BLEU score. It turned out that
an application of the Hierarchical Pitman-Yor Language
Model (HPYLM) requires a minor change in the conventional
decoding process. Additionally to this, we propose a new
Pitman-Yor process-based statistical smoothing method similar
to the Good-Turing method although the performance of this
is inferior to HPYLM. We conducted experiments; HPYLM
improved by 1.03 BLEU points absolute and 6% relative for
50k EN–JP, which was statistically significant.

Keywords-Statistical Machine Translation, Statistical
smoothing method, Hierarchical Pitman-Yor process.

I. INTRODUCTION

Statistical approaches or non-parametric Machine Learn-

ing methods estimate some targeted statistical quantities

based on the (true) posterior distributions in a Bayesian

manner [1] or based on the underlying fixed but unknown

(joint) distributions from which we assume that we sample

our training examples in a frequentist manner [17]. In

NLP (Natural Language Processing), such distributions are

observed by simply counting (joint/conditional) events, such

as c(w), c(w1, w2) and c(w3|w1, w2) where w denotes

words and c(·) denotes a function to count events; since

such quantities are often discrete, it is unlikely that such

events will be counted incorrectly at first sight. However,

it is a well-known fact in NLP that such counting methods

are often unreliable if the size of the corpus is too small

compared to the model complexity. Researchers in NLP

often try to rectify such counting of (joint or conditional)

events using a technique known as smoothing [3], [9]. Most

smoothing techniques do not have a statistical model but

rely on either interpolation or back-off schemes.

This paper discusses a statistical smoothing method based

on (hierarchical) Pitman-Yor processes, which is a non-

parametric generalization of the Dirichlet distribution that

produces power-law distributions [16], [4]. Various pieces

of research have been carried out in which hierarchical

Pitman-Yor processes have been applied to language models

(Hierarchical Pitman-Yor Language Model (HPYLM) [16],

[11], [5]) whose generative model uses hierarchies of n-

grams. This model is shown to be superior to the interpolated

Kneser-Ney methods [9] and comparable to the modified

Kneser Ney methods in terms of perplexity. Hierarchical

Pitman-Yor processes have been successfully applied to

word segmentation as well [4], [10].

This paper is organized as follows. Section 2 reviews hi-

erarchical Pitman-Yor process and related issues. In Section

3 our algorithm is presented; 1) how to obtain HPYLM and

2) a minor change in the decoding algorithm. Experimental

results are presented in Section 4. Section 5 concludes and

provides avenues for further research.

II. PITMAN-YOR PROCESS AND SMOOTHING METHODS

Pitman-Yor Process: The Pitman-Yor process [13]

PY (d, θ, G0) is a three-parametric distribution over a (base)

distribution where d is a discount parameter, θ a strength

parameter, and G0 a base distribution. When d = 0,

the Pitman-Yor process reduces to a Dirichlet distribution

Dir(θG0). This generative procedure produces a power-law

distribution, indicating that many unique words are observed,

most of them rarely, for the following reasons: the more

words have been assigned to a draw from G0, the more

likely subsequent words will be assigned to the draw, while

the more we draw from G0, the more likely a new word

will be assigned to a new draw from G0.

Chinese Restaurant Process: Let (x1, . . . , xn) be

a training set. When the vocabulary is finite, although

PY (d, θ, G0) has no known analytic form, we can describe

the Pitman-Yor process in terms of a generative procedure

that produces x1,x2,. . . iteratively by marginalized out G.

This procedure for generating words drawn from G is called

a Chinese restaurant process.



Let ck be the number of words assigned the value of draw

zk, c· =
∑t

k−1 ck be the current number of draws from G,

and t be the current number of draws from G0. A Chinese

restaurant contains an infinite number of tables, each with

infinite seating capacity. Customers enter the restaurant and

seat themselves. The first customer sits at the first available

table, while each of the subsequent customers sits at an

occupied table with probability proportional to the number

of customers already sitting there ck − d, or at a new

unoccupied table with probability proportional to θ + dt.
If zi is the index of the table chosen by the ith customer,

the ith customer sits at table k given the seating arrangement

of the previous i − 1 customers zi = {z1, . . . , zi−1}) with

probability, as is shown in (1):

P (zi = k|zi) =

{

ck−d
θ+c· 1 ≤ k ≤ t.
θ+dt
θ+c· k = t + 1.

(1)

III. OUR ALGORITHM

Our algorithm addresses two concerns. The first concern

is to update our language model based on the hierarchi-

cal Pitman-Yor process-based smoothing method, which is

described in the first subsection. The second concern is to

incorporate the zero probabilities based on the hierarchical

Pitman-Yor process-based smoothing method. A Phrase-

Based Statistical Machine Translation (PB-SMT) decoder

uses constant zero probabilities for unseen phrases, while the

zero probabilities based on the language model based on the

hierarchical Pitman-Yor process-based smoothing method

are not constant but are different based on context, e.g. (n-

1)-gram hierarchies.

A. Language Model Smoothing

We describe the following generative model which uses

the Pitman-Yor process as a prior which we use in two

language models in common. For a given a context u, let

Gu(w) be the probability of the current word taking value w.

Using a Pitman-Yor process as the prior for Gu[Gu(w)]w∈W

as in (2):

Gu ∼ PY (d|u|, θ|u|, Gπ(u)) (2)

where π(u) is a function whose parameter is a context u,

the discount and strength parameters are functions of the

length |u| of the context, while the mean vector is Gπ(u),

the vector of probabilities of the current word given all but

the earliest word in the context.

Hierarchical Pitman-Yor Language Model: In the gen-

erative model which uses the Pitman-Yor process as a prior

in Equation (2), let us consider π(u) as the suffix of u
consisting of all but the earliest word in Equation (2) [16].

This signifies that u is n-gram words and π(u) is (n-1)-

gram words; this induction of Equation (2) makes an n-gram

hierarchy. Teh proposes a method to use the hierarchical

Pitman-Yor processes recursively to place a prior over Gπ(u)

using Equation (2), but now with parameters dπ(u), θπ(u) and

mean vector Gπ(π(u)) instead.






Gu ∼ PY (d|u|, θ|u|, Gπ(u)
. . .
G∅ ∼ PY (d0, θ0, G0)

(3)

This is repeated until we get to G0, the vector of probabilities

over the current word given the empty context ∅. Finally, we

place a prior on G0 as is shown in Equation (3), where G0 is

the global mean vector, given a uniform value of G0 = 1/V
for all w ∈ W .

The simplest inference procedure is to build a Gibbs

sampler which randomly selects n-gram words, draws a

binary decision as to which (n − 1)-gram words originated

from, and updates the language model according to the

new lower-order n-grams [4]. A blocked Gibbs sampler

is proposed by Mochihashi et al. [10], which is originally

proposed for segmentation. This algorithm is an iterative

procedure, which randomly selects a n-gram word, removes

the “sentence” data of this n-gram word, and updates by

adding a new “sentence” according to the new n-grams. This

procedure is expected to mix rapidly compared to the simple

Gibbs sampler.

By Equation (1), the predictive distribution of n-gram

probability in HPYLM is recursively calculated as in Equa-

tion (4):

p(w|h) =
c(w|h) − d · thw

θ + c(h)
+

θ + d · th·
θ + c(h)

p(w|h′) (4)

where p(w|h′) is the same probability using a (n-1)-gram

context h′. The case when thw = 1 corresponds to an

interpolated Kneser-Ney smoothing [9].1

Good-Turing Pitman-Yor Language Model: In the same

generative model which uses the Pitman-Yor process as a

prior in Equation (2) once (not recursively), let us now

consider π(u) as a count-counts2 function. We refer to

this model as Good-Turing Pitman-Yor Language Model

(GTPYLM). It is to be noted that count-counts nc, described

in Equation (6), is a concept appearing in Good-Turing

discounting [3]:

cg = (c + 1)
nc+1

nc

(6)

where cg is a modified count value used to replace c in

subsequent relative frequency estimates, and nc is the num-

ber of events having count c. Our intention here is to make

1Teh explains this in this way [16]: If we restrict thw· to be at most 1
as in (5),

thw· = min(1, chw·), chw· =
X

h′:π(h′)=h

th′w· (5)

we will obtain the same discount value so long as chw· > 0, i.e. absolute
discounting. Furthermore, supposing that the strength parameters are all
θ|h| = 0, the predictive probabilities in Equation (4) now directly reduce
to the predictive probabilities given by interpolated Kneser-Ney.

2This is also known as event-counts or count of counts.



a prior distribution Gu a power-law. Hence, this method

incorporates zero-frequencies by enforcing the distribution

to be a power-law.

By Equation (1), the predictive distribution of n-gram

probability in GTPYLM is computed as in (7):

p(w|nw) =
c(w|nw) − d · tnww

θ + c(nw)
+

θ + d · tnw·

θ + c(nw)
p(w|nw − 1) (7)

where (nw − 1) is (nc − 1) where c = nw, p(w|nw − 1)
denotes a (nw − 1) count-count distribution, and p(w|nw)
denotes a nw count-count distribution.

B. Decoding Algorithm in PB-SMT

A minor difference in the decoding process is required.

In a test sentence, if we encounter unseen phrases, a con-

ventional PB-SMT decoder looks up the probability with

constant zero-probabilities. However, our algorithm should

look up the corresponding probabilities based on the hi-

erarchical Pitman-Yor processes. We calculate these zero-

probabilities using the parameters that we derived during

obtaining HPYLM.

There are two way to incorporate this: 1) just before we do

decoding, we update a language model by supplying a test

sentence in terms of zero-probabilities, and 2) we modify a

PB-SMT decoder to incorporate this difference. Due to the

easy implementation, we take the approach 1) here, but the

effect would be the same.

Our procedures are follows. Firstly, we prepare HPYLM

parameter file p0(w) which we obtained when we calculate

HPYLM. This HPYLM parameter file contains the param-

eters in Chinese restaurant processes, such as the number

of tables, d, θ, and so forth. Such parameters enable us to

calculate the zero-probabilities for unseen phrases in a test

sentence. The overall algorithm to obtain updated HPYLM

is shown in Algorithm 1.

Algorithm 1 Decoder for HPYLM p(w)

Given: a test sentence s̆ = {s̆1, · · · , s̆n}, HPYLM p(w),
HPYLM parameter file p0(w).
Step 1: By generating a possible n-gram candidate, using

p0 we update HPYLM p′(w).
Step 2: Run a decoder which looks up updated HPYLM

p′(w).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

For all the experiments, we used a standard log-linear

phrase-based MT system based on Moses [8]. The GIZA++

implementation [12] of IBM Model 4 was used for word

alignment, followed by the grow-diag-final heuristics as

phrase extraction. We used SRILM [14] to derive a 5-gram

language model. We performed MERT and use a Moses

decoder. The baseline 1 derived a 5-gram language model by

SRILM with modified Kneser-Ney method and the baseline

2 used with SRILM with Good-Turing method.

For the HPYLM and GTPYLM, we obtained the results

by a method using a blocked Gibbs sampler [10], which

was considerably more efficient compared to a conventional

Gibbs sampler [4], [16]. In this experiment, we used a phrase

table derived by the conventional method. Perplexity was

measured in terms of the same test set.

B. Experimental Results

We conducted an experimental evaluation for JP–EN on

the NTCIR-8 corpus [2] and for FR–EN and ES–EN on

Europarl [7]. We randomly extracted two training corpora

of 50k and 200k sentence pairs, where we used 1,200

sentence pairs (NTCIR) and 2,000 sentence pairs (Europarl)

for the development set, and 1,119 (EN-JP) / 1,251 (JP-EN)

sentence pairs (NTCIR) and 2,000 sentence pairs (Europarl;

test2006) for the test set.

The results are shown in Table I. HPYLM obtained the

best results in all the cases; the best among them was 1.03

BLEU points absolute and 6% relative for 50k EN-JP which

was statistically significant verified by bootstrap resampling

[6]. GTPYLM obtained the second best results in all the

cases; an improvement of 0.90 BLEU points absolute and

5% relative for 50k EN-JP. These experiments also show

that the perplexity measure may be reliable for the final

performance measured by BLEU score.

V. CONCLUSIONS

This paper presents an application of the hierarchical

Pitman-Yor process-based language model to MT. Firstly,

although the performance of HPYLM was reported in terms

of perplexity, there have been no reports, as far as we know,

in terms of BLEU in the MT context. We showed that there

was a gain with a minor change in the decoding process.

Although Teh reported that HPYLM showed a comparable

performance with the modified Kneser-Ney method, we

obtained better results than the modified Kneser-Ney method

here. Secondly, we proposed an alternative language model

using the Pitman-Yor process applying the count-counts

distribution of the Good-Turing method. The performance of

this was not as successful as HPYLM, but it was better than

both the modified Kneser-Ney and Good-Turing methods.

Furthermore, this was statistically significant.

There are several avenues for further research. Firstly, our

results for our three language pairs under 200k sentence

pairs would support the basic effectiveness of this statistical

smoothing method for language modelling. We would like

to extend our work to different language pairs and larger

data sets. Note that for the giga-sized data, this method will

not be required since smoothing is a method to resolve the

sparse data problem. Secondly, our experiments are limited



size system EN-JP Perplexity JP-EN Perplexity

50k baseline1 16.33 71.468 22.01 131.438
50k baseline2 16.20 72.435 21.81 136.812
50k HPYLM 17.36 66.012 22.81 116.074
50k GTPYLM 17.23 67.112 22.70 120.320

200k baseline1 23.42 59.607 21.68 117.78
200k baseline2 23.36 58.587 21.38 119.13
200k HPYLM 24.22 52.295 22.32 105.22
200k GTPYLM 23.22 53.332 22.21 110.12

size system FR-EN Perplexity EN-FR Perplexity

50k baseline1 17.68 188.269 17.80 188.329
50k baseline2 17.58 190.874 17.60 190.314
50k HPYLM 17.81 168.221 18.32 178.269
50k GTPYLM 17.01 178.303 18.33 179.200

200k baseline1 18.40 162.573 18.20 165.839
200k baseline2 18.19 165.232 18.02 168.989
200k HPYLM 18.99 148.338 18.60 153.921
200k GTPYLM 18.70 152.104 18.50 160.332

size system ES-EN Perplexity EN-ES Perplexity

50k baseline1 16.21 198.274 15.17 156.861
50k baseline2 16.01 198.274 15.01 152.435
50k HPYLM 16.91 194.773 15.87 151.434
50k GTPYLM 16.68 196.403 15.75 153.224

200k baseline1 16.87 168.431 17.62 154.273
200k baseline2 16.37 174.856 17.32 168.754
200k HPYLM 17.50 152.312 18.20 145.223
200k GTPYLM 17.15 156.440 18.10 146.211

Table I
RESULTS FOR LANGUAGE MODEL. BASELINE1 IS BY MODIFIED

KNESER-NEY METHOD AND BASELINE2 IS BY GOOD-TURING METHOD.

only to language models. However, it would be possible to

apply a similar method to the translation model. Thirdly, we

may extend our approach to syntax-based or dependency-

based LMs.
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